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Abstract: We present a development environment that proactively and interactively assists the software engineer in mod-
eling complex reactive systems. Our framework repeatedly analyzes models of the system under development
at various levels of abstraction, and then reasons about these models in order to detect possible errors and to
derive emergent properties of interest. Upon request, the environment can then augment the system model in
order to repair or avoid detected behavior that is undesired, or instrument it in order to monitor the execution
for certain behaviors. Specialized automated and human-assisted techniques are incorporated to direct and
prioritize the analysis and related tasks, based on the relevance of the observed properties and the expected
impact of actions to be taken. Our development environment is an initial step in the direction of the very recent
Wise Computing vision, which calls for turning the computer (namely, the development environment) into an
equal member of the development team: knowledgeable, independent, concerned and proactively involved
in the development process. Our tool is implemented within the context of behavioral programming (BP), a
scenario-based modeling approach, where components are aligned with how humans often describe desired
system behavior. Thus, our work further enhances the naturalness and incrementality of developing in BP.

1 INTRODUCTION

The development of large reactive software systems
is an expensive and error-prone undertaking. Deliv-
erables will often fail, resulting in unintended soft-
ware behavior, exceeded budgets and breached time
schedules. One of the key reasons for this difficulty
is the growing complexity of many kinds of reac-
tive systems, which increasingly prevents the human
mind from managing a comprehensive picture of all
their relevant elements and behaviors. Moreover, of
course, the state-explosion problem typically prevents
us from exhaustively analyzing all possible software
behaviors. While major advances in modeling tools
and methodologies have greatly improved our abil-
ity to develop reactive systems by allowing us to rea-
son on abstract models thereof, specific solutions are
quickly reaching their limits, and resolving the great
difficulties in developing reliable reactive systems re-
mains a major, and critical, moving target.

Over the years it has been proposed, in various
contexts, e.g., (Rich and Waters, 1988; Reubenstein
and Waters, 1991; Cerf, 2014; Harel et al., 2015c),
that a possible strategy for mitigating these difficul-
ties could lay in changing the role of the computer in

the development process. Instead of having the com-
puter serve as a tool, used only to analyze or check
specific aspects of the code as instructed by the de-
veloper, one could seek to actually transform it into
a member of the development team — a proactive
participant, analyzing the entire system and making
informed observations and suggestions. This way,
the idea goes, the computer’s superior capabilities of
handling large amounts of code could be manifested.
Combined with human insight and understanding of
the system’s goals, this synergy could produce more
reliable and error-free systems.

In this paper we follow this spirit, and present
a methodology and an interactive framework for the
modeling and development of complex reactive sys-
tems, in which the computer plays a proactive role.
Following the terminology of (Harel et al., 2015c),
and constituting a very modest initial effort along the
lines of the Wise Computing vision outlined there, we
term this framework a wise framework. Intuitively,
a truly wise framework should provide the developer
with an interactive companion for all phases of sys-
tem development, “understand” the system, draw at-
tention to potential errors and suggest improvements
and generalizations; and this should be done via two-



way communication with the developer, which will
be very high-level, using natural (perhaps natural-
language-based) interfaces. The framework presented
here is but a first step in that direction, and focuses
solely on providing an interactive development assis-
tant capable of discovering interesting properties and
drawing attention to potential bugs; still, it can al-
ready handle non-trivial programs, as we later demon-
strate through a case-study.

Various parts of this approach have been imple-
mented by a variety of researchers in other forms, as
described in Sec. 6. A main novel aspect of our ap-
proach, however, is in the coupling of the notion of
a proactive and interactive framework with a model-
ing language called behavioral programming (Harel
et al., 2012b) — a scenario-based language, in which
systems are modeled as sets of independent scenarios
that are interleaved at runtime. This formalism makes
it possible for our interactive development frame-
work to repeatedly and quickly construct abstract ex-
ecutable models of the program, and then analyze
them in order to reach meaningful conclusions. It
is now widely accepted that a key aspect in the via-
bility of analysis tools and environments is that they
are sufficiently lightweight to be integrated into the
developer’s workflow without significantly slowing it
down (Sadowski et al., 2015; Cristiano et al., 2015).
We attempt to achieve this by leveraging scenario-
based modeling. As demonstrated in later sections,
the proactiveness of our approach and its tight inte-
gration into the development cycle can lead to early
detection of bugs during development, when they are
still relatively easy and cheap to fix.

The rest of this paper is organized as follows. In
Sec. 2 we introduce scenario-based programming —
the modeling formalism on top of which our approach
is implemented, and also discuss some analysis tech-
niques for scenario-based programs that are used in
subsequent sections. In Sec. 3 we introduce our de-
velopment framework by means of a simple example.
In Sec. 4 we discuss the various components of the
framework in more detail, and in Sec. 5 we describe a
case-study that we conducted. Related work appears
in Sec. 6, and we conclude in Sec. 7.

2 SCENARIO-BASED MODELING

Behavioral programming (BP) (Harel et al., 2012b)
is a modeling approach aimed at designing and
incrementally developing reactive systems. BP
emerged from the live sequence charts (LSCs) for-
malism (Damm and Harel, 2001; Harel and Marelly,
2003), and, like LSCs, its basic modeling objects are

scenarios. A behavioral model consists of indepen-
dent scenario objects, each encoding a single desired
or undesired behavior of the system. These behavioral
models are executable: when run, the behaviors en-
coded by their constituent objects are all interwoven
together, in a way that yields cohesive system behav-
ior.

More specifically, an execution of a behavioral
model is a sequence of points in which all scenario ob-
jects synchronize and declare events that they want to
be considered for triggering (called requested events),
events that they do not actively request but merely
“listen out” for (waited-for events), and events whose
triggering they forbid (blocked events). During execu-
tion, an event that is requested by some scenario and
not blocked by any scenario is selected for triggering,
and every scenario object that requested or waited for
the event can update its internal state. Fig. 1 (bor-
rowed from (Harel et al., 2014)) demonstrates a sim-
ple behavioral model. The formal definitions of be-
havioral modeling appear in Sec. 2.1.
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Figure 1: The incremental modeling of a system for con-
trolling the water level in a tank with hot and cold wa-
ter sources. Each scenario object is given as a transition
system, where the nodes represent synchronization points.
The scenario object ADDHOTWATER repeatedly waits for
WATERLOW events and requests three times the event AD-
DHOT. Scenario object ADDCOLDWATER performs a sim-
ilar action with the event ADDCOLD, capturing a separate
requirement, which was introduced when adding three wa-
ter quantities for every sensor reading proved to be insuf-
ficient. When a model with objects ADDHOTWATER and
ADDCOLDWATER is executed, the three ADDHOT events
and three ADDCOLD events may be triggered in any order.
When a new requirement is introduced, to the effect that wa-
ter temperature be kept stable, the scenario object STABIL-
ITY is added, enforcing the interleaving of ADDHOT and
ADDCOLD events by using event blocking. The execution
trace of the resulting model is depicted in the event log.

The motivation for using behavioral modeling is
its strict and simple mechanism for inter-object com-
munication. In particular, BP’s request/wait-for/block
interface facilitates incremental, non-intrusive devel-
opment, and the resulting models often have scenario
objects that are aligned with the requirements (Harel
et al., 2012b). This is lent additional support by



studies that indicate that BP is natural, in the sense
that it is easy to learn and fosters abstract program-
ming (Gordon et al., 2012; Alexandron et al., 2014).

In practice, behavioral modeling is usually per-
formed using various high level languages, such as
Java, C++, Erlang, Javascript and, of course, LSCs,
on which BP is based and from which it grew (see the
BP website at http://www.b-prog.org/). Models
written in these languages are fully executable, and
are also referred to as behavioral programs. There,
each scenario object is typically implemented as a
separate thread, and inter-thread communication is re-
stricted to event requesting, waiting-for and block-
ing — thus preserving the semantics of behavioral
modeling. Technically, this is performed by hav-
ing the scenario threads invoke a special synchro-
nization method called BSYNC, and pass to it their
requested/waited-for/blocked events. Once every sce-
nario has synchronized, an event selection mechanism
triggers one event that is requested and not blocked,
and notifies the relevant scenarios.

For actual programming purposes it is often help-
ful to allow threads to also perform local actions —
e.g., read from a file or turn on a light bulb. These
actions are not included in the underlying behavioral
model (i.e., they are abstracted away). The wise
framework that we present here is designed to accom-
pany the development of such behavioral programs,
and is built on top the BPC package (Harel and Katz,
2014) for behavioral modeling in C++. This package
also supports the distributed execution of behavioral
programs (Harel et al., 2015a).

2.1 Formal Definitions

For completeness, we recap here briefly the formal
definitions of behavioral modeling. Following the
definitions in (Katz, 2013), a scenario object O over
event set E is a tuple O = 〈Q,δ,q0,R,B〉, where Q
is a set of states, q0 is the initial state, R : Q→ 2E

and B : Q→ 2E map states to the sets of events re-
quested and blocked at these states (respectively), and
δ : Q×E→ 2Q is a transition function.

Scenario objects can be composed, in the follow-
ing manner. For objects O1 = 〈Q1,δ1,q1

0,R
1,B1〉 and

O2 = 〈Q2,δ2,q2
0,R

2,B2〉 over a common event set
E, the composite scenario object O1 ‖ O2 is defined
by O1 ‖ O2 = 〈Q1×Q2,δ,〈q1

0,q
2
0〉,R1 ∪R2,B1 ∪B2〉,

where 〈q̃1, q̃2〉 ∈ δ(〈q1,q2〉,e) if and only if q̃1 ∈
δ1(q1,e) and q̃2 ∈ δ2(q2,e). The union of the label-
ing functions is defined in the natural way; e.g. e ∈
(R1∪R2)(〈q1,q2〉) if and only if e ∈ R1(q1)∪R2(q2).

A behavioral model M is simply a collection of
scenario objects O1,O2, . . . ,On, and the executions of

M are the executions of the composite object O=O1 ‖
O2 ‖ . . . ‖ On. Each such execution starts from the
initial state of O, and in each state q along the run an
enabled event is chosen for triggering, if one exists
(i.e., an event e ∈ R(q)−B(q)). Then, the execution
moves to state q̃ ∈ δ(q,e), and so on.

2.2 Analyzing Behavioral Models

Earlier we explained the motivation behind behavioral
modeling, from a developer’s point of view. How-
ever, it turns out that due to its simple synchroniza-
tion mechanism, behavioral modeling lends itself nat-
urally also to formal analysis. We briefly recap a few
such analysis methods, which are used by our pro-
posed wise development framework.

2.2.1 Model Checking Behavioral Models

In (Harel et al., 2011; Harel et al., 2013a) a technique
is presented, by which the underlying transition sys-
tems of individual scenario objects are extracted from
high-level behavioral code and are then used in order
to model check the behavioral model. The extraction
of these transition systems is performed by running
individual scenario objects in sandboxes and passing
to them events, just as if they were triggered by the
event selection mechanism, in a way that allows one
to methodically explore their state spaces (Harel et al.,
2013a). Model checking is then performed by adding
special behavioral objects to the model that mark un-
desired behavior, and then traversing the states of the
composite model to see if a violation can occur.

In order to mitigate the state-explosion problem
and allow the model checking of larger behavioral
models, one can replace behavioral objects or sets
thereof with abstract behavioral objects (Katz, 2013).
Intuitively, within a behavioral object, a set of states
q1,q2, . . . ,q` can be abstracted away using a single
state q, such that

R(q) =
⋃̀
i=1

R(qi) and B(q) =
⋂̀
i=1

B(qi).

The transition relation is then adjusted so that any
transition between states s and t in the original model
becomes a transition between s′ and t ′ in the abstract
object, where s′ and t ′ are the abstract states repre-
senting s and t, respectively.

In (Katz, 2013) it is shown that, because ab-
stract states block fewer events and request more
events than their concrete counterparts, this sort of
abstraction yields a behavioral model that is more
permissive than the original one (i.e., it is an over-
approximation). Typically, due to the reduction in the



number of states, this abstract model is also signif-
icantly smaller than its original counterpart. Model
checking and program repair operations can then be
performed on the abstract model (sometimes com-
bined with local refinements steps), and the results are
guaranteed to hold for the original system, thus en-
abling better coping with state-explosion. In later sec-
tions we make extensive use of this abstraction tech-
nique.

2.2.2 Compositional Verification of Behavioral
Models

A useful property of behavioral modeling is that de-
spite the small number of simple-looking concurrency
idioms that it provides (i.e., the requesting, waiting-
for and blocking idioms) it provides significant suc-
cinctness advantages. Specifically, it allows specify-
ing behavioral objects that are exponentially smaller
than what is possible using non-concurrent modeling
formalisms, and even when compared to formalisms
in which any of the requesting, waiting-for and block-
ing idioms are omitted (Harel et al., 2015b). An ex-
ample appears in Fig. 2.
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Figure 2: This behavioral model has two scenario objects,
each depicted as a transition system. Every state corre-
sponds to a synchronization point, and is labeled with its re-
quested and blocked events, whereas the waited-for events
are encoded on the transitions. The scenario on the left
counts modulo two: at odd steps it requests event a and
blocks event b, and at even steps it requests both events. The
scenario on the right is similar, but counts modulo three,
and only requests both events every third step. Together,
these two objets count modulo 6, producing the language
(a5(a+b))ω. In (Harel et al., 2015b) it is shown that mod-
eling this system in a non-concurrent formalism, or even in
one that is devoid of the blocking idiom, requires 6 (= 3 ·2)
states instead of 5 (= 3+ 2). When generalized to the lan-
guage (an(a+ b))ω for an arbitrarily large n, this gap be-
tween the sum and the product of the number of states in
the constituent scenarios is exponential in n. For a more
thorough discussion of the succinctness afforded by behav-
ioral modeling, see (Harel et al., 2015b).

The succinctness afforded by behavioral model-
ing can sometimes be leveraged for efficient compo-
sitional verification (Harel et al., 2013b; Katz et al.,
2015). For example, suppose that we wish to ver-
ify that in the model depicted in Fig. 2 event b can
only be triggered every 6 steps. Direct model check-
ing would entail exploring the 6 composite states
of the system, but compositional verification would

entail exploring the states of each object separately
(a total of 5 states), characterizing the properties
of each individual object, and then using an SMT
solver to derive global correctness from these indi-
vidual properties. More specifically, the individual
object properties in this example can be formulated
as triggered(b, i) =⇒ i≡ 0(mod 2) for the object on
the left and triggered(b, i) =⇒ i≡ 0(mod 3) for the
object on the right, where triggered(b, i) means that
the i’th event triggered was b. These properties can be
verified on the individual objects. Using these object
properties, an SMT solver can quickly deduce the de-
sired property, triggered(b, i) =⇒ i≡ 0(mod 6), cir-
cumventing the need to explore the composite states
of the model. When the above example is general-
ized to (an(a+b))ω for a large n, the gap in the num-
ber of explored states between the direct approach
(roughly the product of the number of individual ob-
ject states) and the compositional approach (roughly
the sum thereof) is exponential in n (Harel et al.,
2013b).

The key observation, which we leverage repeat-
edly in the following sections, is that in scenario-
based modeling it is often simple, and computation-
ally cheap, to analyze many small scenario objects
— and then use this information to reason about the
model as a whole.

3 DEVELOPMENT IN A WISE
FRAMEWORK: AN EXAMPLE

In this section we attempt to convey to the reader,
intuitively, the sense of working in a wise develop-
ment framework from a developer’s point of view.
Thus, we focus almost exclusively on the user experi-
ence, and defer more details about the inner workings
of the framework itself to Sec. 4.

We demonstrate the framework’s operation
through the incremental modeling of a small, illustra-
tive system. Suppose we are developing behavioral
code for a safe that has three levers and an “open
door” button. The specification given to us indicates
that in order to open the door, a user needs to
correctly configure the three levers and then click
the button. Clicking the button when the levers are
not correctly configured should not open the door.
We refer to the three levers as levers A,B and C;
and each lever has three possible positions, denoted
as one, two and three. We denote the configuration
of the levers as a tuple: for instance, configuration
〈1,3,2〉 indicates that lever A is in position one, lever
B is in position three, and lever C is in position two.
The initial configuration is 〈1,1,1〉, and the correct



configuration for opening the door is 〈2,3,2〉. The
user can request the triggering of events of the form
SETXTOY, indicating that lever X is set to position
Y , and also of CLICKBUTTON events. The system
may request an OPENDOOR event, as well as any
internal event needed for the implementation.

We now describe the incremental modeling of this
system in BPC, accompanied by the wise framework.
We start by modeling the three levers. This is done by
creating, for each lever, a scenario object that waits
for events signaling that the position of that lever has
changed, and storing the current position. The code
appears and is explained in Fig. 3.

1 Event position = SETXTOONE;

2 while ( true ) {

3 set<Event > requested = {};

4 set<Event > waitedFor =

5 { SETXTOONE, SETXTOTWO, SETXTOTHREE };

6 set<Event > blocked;

7

8 switch( position ) {

9 case SETXTOONE:

10 blocked = { LEVERXINTWO, LEVERXINTHREE };

11 case SETXTOTWO:

12 blocked = { LEVERXINONE, LEVERXINTHREE };

13 case SETXTOTHREE:

14 blocked = { LEVERXINONE, LEVERXINTWO };

15 }

16

17 BSYNC( requested , waitedFor , blocked );

18 position = lastEvent();

19 }

Figure 3: BPC code for a scenario object called Lev-
erX, representing the behavior of a single lever X (X rep-
resents A, B or C). Line 17 contains the BSYNC syn-
chronization call, where the object synchronizes with all
other objects and declares its requested, waited-for and
blocked events. The lever object never requests any events,
and continuously waits for events signifying that the lever
has changed its physical position — events SETXTOONE,
SETXTOTWO, and SETXTOTHREE. When one of these
is triggered, line 17 returns, and the object updates its in-
ternal state in line 18. Note also events LEVERXINONE,
LEVERXINTWO and LEVERXINTHREE, which represent
other scenarios querying the physical position of lever X .
The lever object constantly blocks those events that corre-
spond to all “wrong” physical positions. Thus, if another
object requests all three events, then only one event — the
one corresponding to the actual lever’s position — will be
triggered. An example appears in Fig .4.

After modeling the three lever objects, we get the
first input from the wise development framework:

Warning: Objects LeverA, LeverB and Lev-
erC constitute a ternary shared array. How-
ever, they are not used. Consider removing
them.

We should emphasize that the wise development
framework is oblivious to the specifics of our pro-
gram, i.e., it has no concept of levers. It did, how-
ever, recognize a pattern in our system model: that
the three lever objects actually operate like a “shared
array”. Here, the term shared array means that other
objects can “write” to it (i.e., by requesting SETX-
TOY events), or “read” from it (by requesting LEV-
ERXINY events). This is an interesting insight about
the implementation, which we did not even have in
mind, but which the development framework will uti-
lize later on. As for the comment that the levers are
currently unused, this makes sense — as we have not
yet written any additional code.

Next, we add a scenario that allows the user,
through a simple interface, to request the triggering
of SETXTOY events, and also the CLICKBUTTON
event (code omitted). When we recompile the code,
the development framework prompts us that now the
shared array is written to but is never read from, and
can still be removed. Then, we add the ButtonPressed
scenario (Fig. 4) that handles the pressing of the but-
ton — it queries the lever configuration, and if it is
〈2,3,2〉 it requests an OPENDOOR event.

However, as the caption explains, the code in
Fig. 4 is actually erroneous: we copied and pasted the
code checking lever B but did not correctly modify it
to check lever C. The wise development framework
now produces the following message:

Warning: Scenario ButtonPressed has an
unreachable synchronization point in line 23.
Suggesting an optimization. Also, the state of
LeverC is never read.

This message immediately points us to the error in the
model, giving us enough information to quickly real-
ize what has happened. The optimization proposed by
the framework (not shown), in which the unreachable
state is removed, is actually a graphical representation
using the Goal visualization tool (Tsay et al., 2007).

We stress that the realization that line 23 is un-
reachable is not trivial, as it is not a property that is
local to the ButtonPressed object. In particular, it
cannot be deduced by inspecting the ButtonPressed
object in isolation, and thus it is very different from
deducing, say, that in i f ( f alse)( f oo()) the function
f oo() can never be called. Rather, this property stems
from the joint behavior of ButtonPressed and LeverB,
where ButtonPressed expects LeverB to be in two dif-
ferent states simultaneously, which cannot occur.

And so, we correct the error in line 19 of But-
tonPressed. Now the warnings from the development
framework disappear, and instead we receive the fol-
lowing information:



1 while ( true ) {

2 BSYNC( {}, { CLICKBUTTON }, {} );

3

4 Set<Event > queryA = { LEVERAINONE,

5 LEVERAINTWO, LEVERAINTHREE };

6 Set<Event > queryB = { LEVERBINONE,

7 LEVERBINTWO, LEVERBINTHREE };

8 Set<Event > queryC = { LEVERCINONE,

9 LEVERCINTWO, LEVERCINTHREE };

10

11 BSYNC( queryA , {}, {} );

12 if ( lastEvent() != LEVERAINTWO )

13 continue;

14

15 BSYNC( queryB , {}, {} );

16 if ( lastEvent() != LEVERBINTHREE )

17 continue;

18

19 BSYNC( queryB , {}, {} );

20 if ( lastEvent() != LEVERBINTWO )

21 continue;

22

23 BSYNC( { OPENDOOR }, {}, {} );

24 }

Figure 4: The ButtonPressed scenario, which waits for a
CLICKBUTTON event, queries the configuration of the three
levers (lines 11, 15 and 19), and if they are correctly set re-
quests an OPENDOOR event (line 23). Querying the posi-
tion of lever X is performed by simultaneously requesting
events LEVERXINONE, LEVERXINTWO and LEVERX-
INTHREE. Only the “correct” event, i.e. the event that cor-
responds to lever X’s current position, will be triggered, be-
cause the other two events will be blocked by LeverX’s sce-
nario object. Observe that this scenario has a bug: in line 19,
instead of checking whether lever C is in position two, we
mistakenly check if lever B is in position two. When this
line in the code (line 19) is reached we already know that
lever B is in position three (line 15), and so line 23 can never
be reached until this bug is fixed.

Information: Event OPENDOOR appears to
only be triggered after event LEVERCINTWO.

And then, a few seconds later:

Information: Event OPENDOOR appears
to only be triggered when the shared ar-
ray is in configuration LEVERAINTWO, LE-
VERBINTHREE, LEVERCINTWO.

Here, the development framework was able to deduce
— without any information regarding the specific sys-
tem being modeled — that configuration 〈2,3,2〉 is of
special importance in the triggering of OPENDOOR
events! This does not indicate a potential error that
the development framework found, as in the previous
cases shown, but rather an emergent property that the
framework was able to deduce — completely on its
own — and which may be of interest to the devel-

oper. Such emergent properties can serve to either
draw attention to bugs or reassure the developer that
the model functions as intended, which was the case
here. Details about how this conclusion was reached
are presented in the next section. A video demonstrat-
ing the examples described in this section is available
online at (Harel et al., 2016).

4 EXPLAINING THE
FRAMEWORK:
THE THREE “SISTERS”

We now describe in some detail the inner workings
of our wise development framework and the vari-
ous components from which it is comprised. Al-
though this framework is but a first step towards the
ultimate goal described in (Rich and Waters, 1988;
Reubenstein and Waters, 1991; Cerf, 2014; Harel
et al., 2015c), it utilizes some powerful techniques,
and building it was far from trivial. An up-to-date
version of the tool, as well as video clips demonstrat-
ing its main principles, can be found online at (Harel
et al., 2016).

As mentioned earlier, our wise development
framework is designed to accompany the develop-
ment of behavioral models, as defined in Sec. 2, and in
particular behavioral programs written in C++ using
the BPC package (Harel and Katz, 2014). The frame-
work involves three new logical components, over and
above the BPC package itself, and apart from the ad-
ditional external tools we invoke, such as a model
checker and an SMT solver (see Fig. 5). We call
these components the three sisters: Athena, Regina
and Livia.

Intuitively, each sister handles a different set of
services provided by the wise development environ-
ment. Athena, the wise one, works proactively dur-
ing development, in an off-line fashion. Her purview
is the usage of formal tools to analyze scenario
objects and produce logically accurate conclusions
about them, which are valid for all runs. For instance,
in the example discussed in Sec. 3, the conclusion that
a certain scenario state could never be reached was
derived by Athena, using model checking.

Regina, more regal than her sisters, also works off-
line, but her purview includes semi-formal methods:
using abstract models of the system, she runs mul-
tiple simulations, collecting statistical information as
she goes. In what is a form of specification mining
she then attempts to reach interesting conclusions, to
be presented to the modeler. Her conclusions may not
be valid for all runs, but they have the advantage of
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Figure 5: A high-level overview of the three sisters. The developer provides a behavioral program, from which Athena extracts
a behavioral model. She then analyzes this model using abstraction-refinement, model checking and SMT solving. Athena
also shares the behavioral model with her sisters: with Regina for the purpose of specification mining, and with Livia for
interactive debugging. The three sisters also exchange information with each other — for instance, Regina may ask Athena to
attempt to formally prove an emergent property that she mined.

reflecting numerous executions, and can thus provide
valuable insights about what will happen in typical
runs. Again recalling the example in Sec. 3, the dis-
covery that OPENDOOR events were related to lever
configuration 〈2,3,2〉was made by Regina, as a result
of running multiple simulations of the system.

The last sister, Livia, who was not demonstrated in
Sec. 3, complements the other components by provid-
ing on-line support for the developer, for debugging
purposes. She can monitor the system as it runs, and
help the developer recognize and comprehend unex-
pected behavior — also by sometimes running local
simulations and tests, and by using an abstract model
of the system.

The three sisters also cooperate: for instance,
emergent properties recognized by Regina can be
passed to Athena for formal verification, and Livia
may use Athena’s formal analysis tools for local anal-
ysis at runtime. Together, the three sisters are meant
to accompany the programmer during development
time and provide the various features which together
constitute the initial wise development framework.

We now delve deeper into the technical aspects of
the framework. The offline components Athena and
Regina continuously run as background processes at
development time. After each successful compilation
of the code, these two sisters receive a fresh snapshot
of the program and begin to analyze it. Next, we dis-
cuss the main steps in their analysis process, repeated
after each compilation.

Step 1: Extracting a behavioral model. The first
step is a key one, and is performed by Athena: she
constructs an abstract, executable behavioral model
of the program, to be used by all three sisters, in all
their further analysis operations. Intuitively, Athena
extracts from the program — given as C++ code
— the underlying scenario objects, as described in

Sec. 2.2.1. This technique, discussed in (Harel et al.,
2013a), leverages the fact that concurrent scenarios
communicate only through the strict BP synchroniza-
tion mechanism. Athena thus runs each scenario in-
dividually in a “sandbox”, while mimicking the pro-
gram’s event selection mechanism, exploring the sce-
nario’s states and constructing its underlying sce-
nario object. The resulting abstract model of the
program thus completely and correctly describes all
inter-scenario communication, while the rest of the
information (internal scenario actions) is abstracted
away, allowing the development framework to han-
dle larger programs. Athena then shares this abstract
behavioral model with Regina for the purpose of run-
ning simulations, and with Livia for the purpose of
online analysis.

Step 2: Identifying logical modules. The next
phase is also performed by Athena, and it involves
partitioning the program’s scenarios into logical mod-
ules according to their functionality. This clustering
phase is needed in order to increase the tool’s scal-
ability: when trying later to check a property φ that
does not involve program module A, the sisters will
attempt to abstract away module A — reducing the
total number of states that have to be explored. We
have set things up so that information regarding the
scenario grouping into modules is not provided by
the programmer; rather, Athena uses a clustering al-
gorithm (Katz, 2013) to determine scenarios’ correla-
tions to events, and then groups them accordingly.

The clustering algorithm operates as follows. The
basic idea is that objects that are logically related are
likely to “care” about the same events. Thus, we de-
fine the correlation between a scenario object O (with
state set Q) and an event e as

cor(O,e) =
|{q ∈ Q | e ∈ R(q)∪B(q)}|

|Q|
,



i.e. the portion of O’s states in which event e is re-
quested or blocked. Given a threshold M, this corre-
lation relation defines an equivalence relation, where
if cor(O1,e) > M and cor(O2,e) > M then objects
O1 and O2 are in the same equivalence class. M is
determined dynamically — Athena starts by setting
it to 1, and then gradually reduces it until the com-
puted equivalence classes are sufficiently large. For
the definition of “sufficiently”, we have empirically
found that requiring at least 75% of the computed ob-
ject classes to have at least 4 objects in them worked
well on our examples — i.e., it leads to non-trivial
equivalence classes that indeed contain logically re-
lated scenario objects.

Apart from applying this clustering algorithm,
Athena also compares the extracted behavioral model
to a predefined meta-model with known/common pro-
gramming constructs (Katz et al., 2015) which we
have built into our tool. Currently supported con-
structs include semaphores, shared arrays, sensors
and actuators, and our on-going work includes adding
support for additional ones. If it is discovered that cer-
tain scenario objects are instantiations of meta-objects
that are logically connected (e.g., one scenario imple-
ments a semaphore and another scenario waits on that
semaphore), they may also be grouped together into
the same logical module. Recalling the example of
Sec. 3, it was Athena who realized, by comparing the
input model to her stored meta-model, that the lever
scenarios constituted a shared ternary array.

Step 3: Deriving candidate emergent proper-
ties. The next step employs specification mining tech-
niques, and is performed by Regina. She attempts to
determine, by running multiple simulations on the be-
havioral model of the program (which was provided
by Athena), a list of possible properties of the system.
These are discovered by analyzing simulation traces
and looking for patterns: events that always (or never)
appear together, events that cause other events to oc-
cur, producer-consumer patterns, etc. Such abilities
can be viewed as a form of mining traces for scenario-
based specifications (see, e.g., (Lo et al., 2007)). The
generated properties are not guaranteed to be valid,
and need to be checked — either formally, by Athena
(e.g., by model checking), or statistically, by Regina
(e.g., by running even more simulations of the sys-
tem). If and when proven correct, and assuming they
are relevant, these emergent properties can serve as
part of the official certification that the system per-
forms as intended (an example appeared at the end of
Sec. 3). However, even when the sisters guess “in-
correctly”, i.e., come up with properties that are later
shown not to hold, this can still be quite useful, often
drawing the developer’s attention to bugs.

Step 4: Prioritizing properties. Once Regina has
obtained a list of candidate properties, the next step
is to attempt to prove or disprove each of them. In
our experience with the tool, for a large system this
list tends to contain dozens of properties, and so it
is typically infeasible to model-check each and every
one of them and present the conclusions quickly. This
difficulty is mitigated in our system in several ways:
(i) We attempt to reduce redundancy. Thus, if we have
identified a class of similar emergent properties, we
may start by checking just one of them and assign the
remaining properties a lower priority. (ii) We employ
a prioritization heuristic, aimed at checking first those
properties that are likely to be more interesting to the
user. For instance, if a semaphore-like construct was
identified, we will prioritize the checking of a prop-
erty that states that in some cases mutual exclusion
may be incorrectly implemented, as this is consid-
ered a safety critical property, and thus may be more
interesting to the user. (iii) We present any conclu-
sion to the user as soon as it is reached, while the sis-
ters continue to check additional properties. (iv) We
leave room for manual configuration of the frame-
work; i.e. the developers can prioritize the testing of
certain properties, if they so desire.

Having obtained a prioritized list of properties to
check, the remainder of the framework’s operation is
dedicated to discharging each of them (step 5) and
presenting the results to the user (step 6). The frame-
work will thus alternate between steps 5 and 6 until
all the candidate emergent properties have been dis-
charged, or until it runs out of time — possibly due
to a renewed compilation of the code and the start of
another analysis cycle.

Step 5: Proving/disproving properties. The
wise development framework now attempts to check,
in sequence, each of the candidate properties. As
there are typically many properties to check, it is
desirable to dispatch each property as soon as pos-
sible — so that the results will be presented to
the user in time to be relevant. To this end, we
build upon a large body of existing techniques for
formally analyzing scenario-based models, as dis-
cussed in Sec. 2.2. These include, e.g., abstraction-
refinement techniques (Katz, 2013), program instru-
mentation techniques (Harel et al., 2014) and SMT-
based compositional techniques (Harel et al., 2013b;
Katz et al., 2015). Indeed, this is the main reason
why we chose to implement a wise framework in the
context of the scenario-based paradigm: it is suffi-
ciently expressive for real-world systems (Harel and
Katz, 2014), but on the other hand is amenable to,
and even facilitates, program analysis (Harel et al.,
2015d). Since the ability to quickly and repeatedly



analyze behavioral models is critical to our approach,
this seemed like a natural fit.

By default, Athena will attempt to discharge
properties using abstraction-refinement based model
checking for scenario-based programs (Katz, 2013).
Alternatively, the user may configure the framework
to use other tools: explicit model checking or an
SMT-based approach (also performed by Athena),
or have Regina perform statistical checking. Here,
statistical checking entails Regina running many
simulations under various environment assumptions
(fair/unfair environment, starvation, round-robin trig-
gering of events, etc.), and repeatedly checking the
property at hand. This technique is not guaranteed to
be sound, of course, but it can yield interesting con-
clusions nonetheless. Moreover, it affords a level of
assurance of the property holding, which may suffice
for ones that are not safety-critical. We are currently
in the process of implementing an adaptive mecha-
nism that would attempt to run the various techniques
in Athena’s arsenal with a timeout value, abandoning
a technique if it does not prove useful for a specific
input.

Step 6: Presenting the results. The final phase
of the sisters’ analysis cycle involves displaying to the
user the properties that were proved or disproved. In
some cases, the mined properties are irrelevant, and
the user may discard them. In other cases, desirable
properties are shown to hold, and the user is then reas-
sured that the program is working as intended. The re-
maining cases can either be undesired properties that
do hold, or “classical” bugs, where a property that the
user assumed to hold is proven by Athena to be vio-
lated. In the latter case, the user can interact with the
development framework, and ask for (i) a trace log
showing how the property was violated; (ii) a sug-
gestion for a fix, in the form of a scenario that is to
be added the model (Harel et al., 2012a; Harel et al.,
2014); or (iii) the addition of a monitor scenario, to
alert the user when the property is violated at run-time
(usually used for debugging purposes).

Apart from the analysis flow just described,
Athena also supports some forms of automatic op-
timization — e.g., identifying parts of the code that
may never be reached and suggesting how to remove
them, as we saw in Sec. 3.

So far we have dealt with the framework’s offline
capabilities, performed by Athena and Regina — that
is, analysis performed during development, usually
after compilation, but without running the actual sys-
tem. In contrast, the online sister Livia participates in
debugging the system as it runs. She connects to the
system and monitors it by “pretending” to be a sce-
nario object in the behavioral program, which con-

stantly waits for every one of the program’s events.
Livia also has at her disposal the abstract model of
the program produced by Athena in the first step of the
analysis, and she uses it — along with the sequence of
events triggered so far — to keep track of the internal
states of every object in the system.

Livia’s main capability is to launch bounded
model checking from a given state, checking for prop-
erties at run time. For instance, the user debugging
the program might believe that a corner case has been
arrived at, from which the initial state can never be
reached, and can ask Livia to investigate this. She will
attempt to verify the property using bounded model
checking. This sort of operation will typically be ini-
tiated manually by the user, but Livia also attempts
to recognize problematic cases on her own — for in-
stance, when certain objects in the system have be-
come deadlocked or simply have not changed states
in a while — and asks the user whether she should
investigate. As previously mentioned, whenever a
more thorough analysis is requested Livia can also
pass queries along to Athena and Regina.

5 A CASE-STUDY: A CACHE
COHERENCE PROTOCOL

In order to evaluate the applicability of our wise
development framework to larger systems, we used it
to develop a cache coherence protocol. Such proto-
cols are designed to ensure consistent shared memory
access in a set of distributed processors. In order to
minimize the number of read operations on the ac-
tual memory, processors cache the results of previ-
ous reads. Consistency then means that cached values
stored throughout the system need to be invalidated
when a processor writes a new value to the actual
memory. The motivation for choosing this particu-
lar example was that cache coherence protocols are
notoriously susceptible to subtle, concurrency-related
bugs, making them a prime candidate to benefit from a
wise development environment. The specific protocol
that we implemented is a variant of the well-studied
Futurebus protocol (Clarke et al., 1995).

An important question that we attempted to ad-
dress through the case-study was whether the notion
at the core of our approach — namely, developing a
non-trivial system together with the aid of a proactive
framework — is convenient and/or useful. While this
issue is highly subjective, we can report that in the
systems we modeled the sisters’ aid proved valuable.
In particular, they typically displayed their insights
about the program in a timely manner, with results
starting to flow in seconds after each compilation;



and although sometimes the insights proved irrele-
vant, in several cases they pointed out concurrency-
related bugs that we had overlooked, and which we
then repaired. In other cases, the framework’s con-
clusions served to confirm that the model was work-
ing as intended, which was particularly reassuring, for
example, after adding a new feature.

Another goal that we had was to identify a ba-
sic methodology for how modeling or programming
should be conducted in such an environment. A setup
that we found convenient is depicted in Fig. 6. As for
the flow of the process, we found it useful to have a
quick glance at the framework’s logs after each com-
pilation to check for any critical mistakes, and to look
more thoroughly at the logs after making significant
changes to the code base. Occasionally, when certain
properties draw our particular attention, we used the
interactive interface (depicted in Fig. 7) to guide the
framework.

Figure 7: A simple GUI that we occasionally used in order
to interactively instruct the development environment to fo-
cus on certain emergent properties. The interface allows
us to choose which of the candidate emergent properties
should be handled next, and how: explicit or abstraction-
based model checking, statistical testing, creating a monitor
thread, etc.

We now show two examples of the usage of the
wise development framework during our case-study.
A more complete set of examples, as well as the entire
code base, is available online at (Harel et al., 2016).
In order to properly illustrate the tool’s usage during
development, we took snapshots of our code at signif-
icant milestones, along with the conclusions that the
wise framework was able to draw from it — these are
also available online. Finally, we also provide there
a video clip that features the development framework
in action.

Fig. 8 depicts a list of emergent properties that the
development framework produced at one point dur-
ing development. Recall that unless given specific in-
structions by the developer, the tool begins to check
these properties, one by one; the figure shows a list of

Checking emergent properties:

ReleaseBus(1) <--> Cache[2] : RequestBus(1)

[fails]

Cache[2] : RequestBus(1) --> ReleaseBus(1)

[holds]

ReleaseBus(1) <--> Cache[1] : RequestBus(1)

[fails]

Cache[1] : RequestBus(1) --> ReleaseBus(1)

[holds]

Cache[2] := (Mem[1] == 1) --> ReleaseBus(1)

[holds]

ReleaseBus(1) <--> Pc[1] : Success

[fails]

Cache[2] : RequestBus(1) <--> Pc[2] : Success

[fails]

...

Figure 8: A list of emergent properties produced and
checked by the wise development framework. The tool typ-
ically does not finish checking everything on the list, and
so information is displayed as soon as it is available. A
counter-example is available for properties that fail to hold.

properties that have already been checked, indicating
which of them hold and which do not. The tool mines
for various types of properties, two of which are de-
picted in the figure: implications, denoted a→b, i.e.,
whenever event a occurs b also occurs a short time
earlier or later, and equivalences, denoted a↔b, i.e.,
the implication holds in both directions.

Fig. 9 depicts an example for which Athena’s
abstraction-based model checking proved especially
handy, allowing her to quickly cover more proper-
ties. There, the emergent property being verified was
that “cache 3 cannot acquire bus 2 repeatedly with-
out first releasing it” — a property that describes
mutual exclusion in the bus ownership. This prop-
erty is an instantiation of the general pattern “con-
secutive a events must have b events between them”.
At the time this property was mined and tested, di-
rectly model checking it entailed exploring 972233
reachable states and took over 27 minutes. By us-
ing the abstraction-refinement techniques discussed
in Sec. 2.2.1, Athena was able to abstract away ir-
relevant parts of the code (namely code modules that
only pertained to other buses). In this way, verifying
the property entailed exploring just 21000 reachable
states, and took less than 31 seconds. The key ob-
servation here is that this is by no means merely a
standard direct usage of abstraction-refinement. The
entire process — finding the emergent property, figur-
ing out which modules are not likely to affect it so that
they can be abstracted away, and then model checking
the property on the abstract model — were all han-
dled proactively and automatically by the framework.



Figure 6: Screenshots of our wise development framework, taken during the cache coherence case-study. The window on
the left depicts a standard editor, in which the code of the program is being written. The analysis tools are running in the
background, and with every successful compilation of the code they automatically receive a fresh snapshot and analyze it.
The window on the right shows output from the analysis — in this case, emergent properties that were examined. One property
was proved correct and another was shown not to hold (a counter-example is provided). Most of the time we had these two
windows open on separate screens.

Checking emergent property:

Consecutive Cache[3] : RequestBus(2) events

must have ReleaseBus(2) events between them

Attempting abstraction -based model checking

Abstracting module 1:

CacheOneUpdate, CacheTwoUpdate,

CacheTwo, CacheOne,

CacheTwoReadFetchBit, CacheOneReadFetchBit,

CacheTwoReadHasBit, CacheTwoWriteFetchBit,

CacheTwoWriteHasBit, PcTwoRead, PcTwoWrite,

CacheOneReadHasBit, CacheOneWriteHasBit,

PcOneRead, PcOneWrite, CacheOneWriteFetchBit

Abstracting module 2:

CacheTwoInvalidate

Abstracting module 3:

CacheOneInvalidate

Conclusion: property [holds]

Figure 9: Extracts from the logs of the wise development
framework, illustrating the autonomous verification of an
emergent property that has been identified. The three code
modules depicted (each a set of scenario objects) are ir-
relevant to the property at hand, and are automatically ab-
stracted. Other modules in the program, those that are rel-
evant to the property at hand, are not abstracted. The prop-
erty is then verified for the resulting over-approximation —
leading to improved performance.

Clearly, such speedups allow the framework to cover
more properties and present them to the programmer
in a timely manner.

6 RELATED WORK

Work related to subject of this paper can be
viewed in two perspectives. One is over the indi-
vidual capabilities of the three sisters, that is, mainly,
discovering and proposing candidate emergent prop-
erties, and then verifying or refuting these properties.
The other perspective is that of the overall view of a
wise development environment that accompanies the
developer and automatically and proactively carries
out these tasks and others, such as requirements anal-
ysis, specification mining, test generation, synthesis,
and more.

From the first perspective, there is a vast amount
of pertinent research, and we focus here on only a
few of the relevant papers. The actions performed by
Regina, i.e. the dynamic discovery of candidate prop-
erties and invariants from program execution logs, is
a form of specification mining (Ammons et al., 2002).
This topic has been studied in the context of scenario-
based specification in, e.g., (Cantal de Sousa et al.,
2007; Lo and Maoz, 2008), and Regina uses simi-
lar techniques. For instance, she looks for emergent
properties that have the trigger and effect structure
of (Lo and Maoz, 2008). However, a key aspect in
Regina’s operation is the need to conclude the mining
phase as quickly as possible, so that she can be seam-
lessly integrated into the development cycle. This is
achieved by employing prioritization heuristics, and
putting limits on the number of traces (and lengths
thereof) that Regina considers. In the future we intend
to enhance Regina with a mechanism similar to the
one discussed in (Cohen and Maoz, 2015), where sta-
tistical criteria are used to determine when “enough”
traces have been considered, hopefully boosting her
performance even further.



Checking whether properties mined from traces
indeed hold for the model in general brings us to
the broad field of program and model verification.
Many powerful and well known tools exist, such as
SPIN, SLAM, BLAST, UPPAAL, Java Pathfinder,
ASTRÉE, ESC/Java and others, and they utilize many
forms of explicit and symbolic model checking, static
analysis, deductive reasoning, and SAT and SMT
solving (see (Alur et al., 2015) for a brief survey of
the application of such methods in practice). In our
framework these tasks are handled by Athena, and she
uses tools specifically optimized for behavioral mod-
els (Harel et al., 2011; Katz, 2013; Katz et al., 2015).

As to the second perspective, successful attempts
at automatic property discovery and subsequent ver-
ification appear, e.g., in (Nimmer and Ernst, 2001;
Zhang et al., 2014). There, the Daikon tool is used
to dynamically detect candidate program invariants
which are then used to either annotate or instru-
ment the program. In (Nimmer and Ernst, 2001)
these guide ESC/Java in verifying the properties, and
in (Zhang et al., 2014) they help guide symbolic exe-
cution in the discovery of additional or refined invari-
ants. The motivation and approach of Daikon are very
close to ours, but we aim at constructing a fully in-
tegrated, proactive and interactive environment, built
upon the highly incremental paradigm of behavioral
modeling.

Providing an interactive analysis framework that
is tightly integrated into the development cycle/en-
vironment has become quite widespread in the in-
dustry over recent years. Some noticeable examples
are Google’s Tricorder (Sadowski et al., 2015), Face-
book’s Infer (Cristiano et al., 2015) and VMWare’s
Review Bot (Balachandran, 2013) tools. These tools
use static analysis to automate the checking for vi-
olations of coding standards and for common defect
patterns. Lessons learned from these projects indi-
cate that, in order to be successfully accepted by pro-
grammers, an integrated analysis framework should
have the following properties: (i) it needs to seam-
lessly integrate into the workflow of developers; (ii) it
must produce results quickly; and (iii) it has to per-
form its analysis in a modular manner, so that it can
scale reasonably well to large projects. The design
of our framework is indeed aimed at achieving these
properties. In particular, for the modular analysis part,
Athena attempts to leverage the special properties of
scenario-based models and reason about individual
objects. In (Harel et al., 2015b), it is shown that ob-
jects in behavioral models often have very small state
spaces; and this allows Athena to effectively compare
these objects to her stored meta-model and identify
object patterns that can later be used for analysis.

7 CONCLUSION

In this paper we contribute to the effort of sim-
plifying and accelerating development of robust reac-
tive systems, by proposing a development framework
along the lines raised in e.g., (Cerf, 2014; Harel et al.,
2015c). In a nutshell, the idea is to start with a model-
ing/programming formalism that is expressive, modu-
lar and relatively simple, and integrate quick, contin-
uous, and easy-to-use analysis into the development
process. This entails extending and adjusting exist-
ing analysis techniques in order to render them more
interactive and proactive.

Our development framework is currently com-
prised of three main elements: specification mining
and initial semi-formal analysis for generating can-
didate system properties, abstraction-assisted formal
analysis for verification of detected properties, and
run-time debugging. When integrated into the devel-
opment cycle, these elements can often draw devel-
opers’ attention to subtle bugs that could otherwise be
missed. We carried out initial evaluation of the frame-
work by iteratively developing a cache coherence pro-
tocol, and saw that it was successful in discovering
and reporting bugs.

In the future we plan to carry out a more ex-
tensive, empirical comparison between our devel-
opment framework and related tools, such as Tri-
corder (Sadowski et al., 2015) and Infer (Cristiano
et al., 2015). We also plan to enhance Regina’s
specification-mining capabilities with learning tech-
niques (Ammons et al., 2002), allowing her to learn
over time which emergent properties are most valu-
able to programmers and should be checked first.

While our work so far is but an early step towards
the vision of the computer acting as a wise, fully-
fledged proactive member of the development team,
we hope that it contributes to demonstrating both the
viability and the potential value of this direction.
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